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A generalized Riemann problem is introduced for the equations of reactive non-viscous 
compressible flow in one space dimension. Initial data are assumed to be linearly distributed 
on both sides of a jump discontinuity. The resolution of the singularity is studied and the 
first-order variation (in time) of flow variables is given in exact form. 0 1989 Academic press, IN. 

1. INTRODUCTION 

Consider the Euler equations that model the time-dependent flow of an inviscid, 
compressible, reactive gas in one space dimension. Taking a model with no heat 
conduction or viscosity, the equations take the form 

U, + f’(U), = G( UL 

i 

P 

u= p” 
p(e + 4~4’ 

PZ 

Here p is the density, u is the velocity, e is the specific internal energy, p is the 
pressure, and z is the mass fraction of unburnt gas. Thus z = 1 (resp. z = 0) 
represents the completely unburnt (resp. burnt) gas. In (1.1) we are assuming also 
that an equation-of-state of the form p = p(e, p, z) is given (note that e is the “total” 
internal energy, including the contribution of “chemical” energy). The “reaction 
rate” function k(p, p, z) is assumed to be non-negative, so that the reaction process 
is “irreversible.” 

In this paper we provide the analytical tools needed for a numerical high 
resolution scheme for the time-integration of (1.1). To be specific, we address the 
generalized Riemann problem (GRP) which can be formulated as follows. 
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Let U,(x) be two linear distributions of the jlow variables and consider the initial 
value problem for ( 1.1) where, 

U(x, 0) = 
i 

u+ (XL x > 0, 
u- (xl, x < 0. 

Let iJ(x, t) be the solution. Find, 

b-4 

(b) g (0,O) = ,liF+ fj w, t). 
(l-2) 

Observe that even in the case that U,(x) are constant states, the solution U(x, t) 
is not “self-similar” (i.e., depending on x/t only) due to the presence of a 
non-vanishing right-hand side in (1.1). Thus, characteristic lines and discontinuity 
trajectories are not straight lines and there are no “Riemann invariants” as in the 
standard Riemann problem for compressible flows (see [S] ). Furthermore, the 
dependence of e on z implies that the flow is not “adiabatic,” namely, that entropy 
is not preserved along streamlines even in smooth regions of the flow (indeed, the 
concept of entropy in this case needs to be discussed. See next section). 

The main building block in our solution of the GRP is a careful analysis of the 
structure of a centered rarefaction wave. This analysis enables us to “propagate” 
directional derivatives from the head of the rarefaction fan, where they are deter- 
mined by the initial conditions, to the tail of the fan, where they can be translated 
into the desired time-derivatives. While the method is applied in the present work 
only to the evaluation of the first-order time-derivatives, it can easily be generalized 
to account for the time-derivatives of any order. 

In solving the GRP we make essential use of a fact that enables us to determine 
limiting values at the singularity by first solving the associated Riemann problem 
(RP) which is the following. 

Given the above initial conditions for the GRP, set 

u, = ,&& u, (xl, U[ = ,ln-- K(x), 

and let U&x, t) = R(x/t) be the solution of 

; (i,,+$‘h4=0, 
(1.3) 

Our proposition is now. 
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PROPOSITION [7]. Let U(x, t) be the solution to the GRP and let R(x/t) be the 
solution of the associated RP. Then, for every fixed direction x/t = 1, 

lim U(,lt, t) = R(I). 
t-o+ (1.4) 

Furthermore, the wave configuration for the GRP near the singularity is the same as 
that for the associated RP. 

The last part of the above proposition implies that if the solution of the 
associated RP yields a shock travelling to the right, then this is the case also for the 
GRP, etc. 

In order to put this work in the appropriate perspective of numerical applica- 
tions, let us recall briefly the so-called “Godunov-type” numerical schemes 
(approximating ( 1.1)). 

Suppose that we use equally spaced grid points xi = i Ax along the x-axis and 
equal time intervals of size At. By “cell i” we shall refer to the interval extending 
between the “cell-boundaries” xi* i,* = (i + i) Ax. We let Ql denote the average 
value of a quantity Q over cell i at time n At. Similarly, we denote by Qua,:/,’ the 
value of Q at the cell boundary xi + ,,*, averaged over the time interval 
(n At, (n + 1) At). Generally speaking, a “Godunov-type” (or “quasi-conservative”) 
difference scheme for (1.1) is given by 

U;+‘-U;= -$[F(Uf;;/;)-F(U:_+;/;)]+At.G(U;+1/2). (1.5) 

In this scheme one must still give an appropriate interpretation to the values of U 
at time (n + $) At. A fundamental way of doing it was proposed by Goldunov [6] 
and may be described as follows. Assume that at time n At the point xi+ 1,2 
separates two constant states WY, IJY, i, and also that GEO. Solving the resulting 
Riemann problem, one takes lY~jJ$‘~ to be the (constant) solution along x = xi+ ,,2 
(observe that even if this line represents a jump discontinuity the flux vector is still 
continuous there). The resulting scheme is of first-order accuracy and has relatively 
poor resolution properties. In order to upgrade this scheme (in terms of accuracy 
and resolution) we assume now that the values of U are linearly distributed in cells, 
with possible jumps at xi+ 1,2, which gives rise to an initial value problem for (1.1). 
Indeed, locally at each cell boundary we have a GRP, and its solution (as in (1.2)) 
serves as a linear (in time) approximation to the values U(x,+ ,,2, t). Thus, using the 
obvious analog of the notation in (1.2), one takes 

u;;l'lzz = u;, 1,2 + . 
i+ 112 

(1.6) 

Further details of the numerical scheme along with a numerical example will be 
given in Section 7. 

To relate this work to previous work on the subject (i.e., finite difference schemes 
for (1.1) using “Riemann problem approach” at singularities) we mention the works 
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of Chorin [3] and Colella, Majda, and Roytburd [4]. Both of these works are 
aimed at calculating travelling combustion waves. In the limit of “infinite reaction 
rate” (i.e. with z jumping from 1 to 0) it is well known [S] that the fluid-dynamical 
model yields a shock across which the total reaction takes place. In contrast to that, 
in the “finite reaction rate” model given by (1.1) the jump in z occurs only across 
a contact discontinuity. Thus, the “local Riemann problem” solutions differ from 
the “global” problem that they are supposed to approximate. Colella, Majda, and 
Roytburd use a split scheme, where the fourth equation of (1.1) is handled in a 
separate step. On a “local” basis, this amounts to convecting the discontinuities of 
z only along streamlines (i.e., contact discontinuities). On the other hand, Chorin 
[3] uses a “Riemann solver” for the full system (1.1) where, however, he allows 
jumps of z across both shocks and contact discontinuities. The remarkable results 
that he gets (see also [4]) have to be contrasted with the obvious fact that his 
“Riemann solver” violates the weak solution requirement imposed on (1.1). We are 
not quite sure that his scheme is yet fully understood. 

The plan of the paper is the following. In Section 2 we introduce our notation, 
discuss the characteristic relations associated with (1.1) and switch to a Lagrangian 
formulation of the problem. In Section 3 we discuss the resolution of a centered 
rarefaction wave. which serves as a basis for the full Lagrangian solution given in 
Section 4. In Section 5 we provide the details needed for the completion of the solu- 
tion in the Eulerian framework. In Section 6 we specialize to the case where the 
equation of state is given by a y-law relation (see (6.1)) and a simplified Arrhenius 
model is used for the reaction equation (see (6.3)). This is the case treated in the 
works [3,4) mentioned above. Here we are able to give fully explicit expressions 
for the various ingredients of the solution. 

In Section 7 we give a few more details related to the numerical scheme (1.5). In 
particular, we discuss two different ways (labeled “explicit” and “implicit”) of 
differencing the reaction equation (the fourth equation in (1.1)). As an example, we 
give the results of several computations for an ozone decomposition C-J detonation. 
This example is taken from [4]. Using the same mesh sizes in our schemes, we 
compare our results with those obtained there. 

Finally, in a recent preprint, A. Bourgeade [8] has obtained results closely 
related to ours. His methods, however, are completely different. 

We conclude by remarking that the present method can easily be extended in 
various directions. One that could be of particular interest is the inclusion of 
“source terms” in the fluid-dynamical part. This (without reactions) was done in 
[2] for the case of a variable cross section and could be incorporated here to study 
reactions in, say, cylindrical or spherical geometries. 

2. PRELIMINARIES AND NOTATION 

In what follows we shall address the GRP as presented in (1.2). Recall that the 
Riemann problem in (1.3) was labeled as the Associated RP. In addition to the 
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basic flow variables appearing in ( 1.1 ), we shall also make extensive use of the 
speed of sound c and the “Lagrangian” speed of sound g = pc. The definition of c 
in our case needs to be clarified. Indeed, for each fixed value of z we define the 
entropy S(e, p, z) as usual by 

where T = T(e, p, z) is the temperature. Solving for e we have e = e(p, S, z) and 
substituting this in the equation of state we get p =p(S, p, z). We then set 

c2 = 2 (S, p, z). ap 
As a rule, we shall always indicate the independent variables when differentiating 

a thermodnamical function, as has been done in (2.2). 
It can easily be checked that the first three equations of (1.1) yield the charac- 

teristic relation 

dx 
along -= u. 

dt (2.3) 

Using (2.1) and the fourth equation in ( 1.1 ), this can be written as 

dx 
along - = u. (2.4) 

dt 

We now transform the system (l.l), replacing the coordinate x by the 
Lagrangian coordinate 5 given by 

dr = p dx, ijO) = 0. (2.5) 

Replacing the third equation of (1.1) by (2.4), the system can now be written as 

In deriving the characteristic relations for (2.6), we express p in terms of S, p, z, 
so that the momentum equation becomes 

24, + c2pc +pss, +pzzF, = 0. 
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Combining this equation with suitable multiples of the other equations, we obtain 

But from (2.4) we have 

ps.f+pzk=k. as 
(  

a AX p, z) 0: S(e, P, z) + t p(S, p, z) 

= k(e, P, z) i p(e, P, z), 

so that (2.7) simplifies to 

g du + dp = fk i p(e, p, z) dt along & 
z= +g. 

(2.7) 

P-8 1 

Finally, we introduce some notation for the treatment of the GRP for the system 
(2.6). We assume that initially V(& 0) = I’*(<) is piecewise linear with a jump at 
5 = 0. This is justified by the fact (to be proved later) that the time derivatives at 
the singularity depend only on the limiting values (as r + 0) of the initial conditions 
and their slopes. Hence we may replace x-derivatives by <-derivatives according 
to (2.5). Letting V,=limt,,- V-(t), V,=lim,,,+ V+(t), we denote by 
R,(1; V,, V,), A = r/t, the Lagrangian solution of the associated Riemann problem. 
Denoting by V(<, t) the solution to the GRP for (2.6), our objective (in analogy 
with (1.2)) is to determine (a/c%) V(0, O)=lim,,,+ (a/&) V(0, t). Clearly, in this 
case the line 5 = 0 represents the contact discontinuity across which the variables 
p, S, z may be discontinuous, so that we must compute their time derivatives on 
both sides of this line. 

We employ the following notation conventions: 

Subscripts “r, I” denote limiting values as r + 0 + , 0 - , respectively. 
An asterisk (*) is used for values at t = 0 + along 5 = 0 (along with ‘9, I” for 

discontinuous quantities). 

Further details are given in Table I, where Q stands for any one of the flow 
variables (see also Fig. 1 in Section 3 below). 

Remark. Note that if two limiting processes are implied, they must be carried 
out in the indicated order. For example (aQ/@),* means that first the <-derivative 
is evaluated at c = 0+ and its limit is then taken as t + O+. On the other hand, 
(c?Q/&), is computed by first taking the t-derivative at t =0 and then letting 
t+o+. 
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TABLE I 

Notations for the Lagrangian GRP 

Symbol Delinition 

lim Q(& 0) as 5 +O+, O- 

constant slopes for 5 > 0, 5 < 0 

Lagrangian solution of the associated RP, A = C/I 
= R,(O; V,, V,) 

right and left values for Q discontinuous 
across < = 0 (e.g., Q = p or g) 

,ty+ kQ(S,I)att=O 

Right and left values of for discontinuous Q 

Also note the meaning of the various groups of variables: 

are the given initial data. 
result from the solution of the associated RP. 
are time-derivatives which are evaluated 
from the initial data by (2.6). 

(JQP)*> (~QlX):, (aQ/X): result from the solution of the GRP. 

3. RESOLUTION OF A CENTERED RAREFACTION WAVE (CRW) 

It is a well-known fact that a jump discontinuity in the initial data is resolved in 
terms of centered rarefaction waves or jump discontinuities. In the context of the 
GRP the latter are easily handled in terms of the associated jump conditions, as we 
shall show in the next section. However, the centered rarefaction wave (CRW) 
requires some further considerations. These considerations are discussed in detail in 
this section and, as in the other applications of the GRP scheme, constitute the 
basic analytical tool of the method. 
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The basic idea is to use characteristic coordinates throughout the CRW, so that 
the singularity is “blown up” into a “full segment” in the characteristic plane, where 
the CRW is now represented by a rectangular zone. The base of this rectangle 
corresponds to the singularity. The flow variables are smooth in the rectangle and 
their values at the base are derived from &(A; V,, V,), the solution of the 
associated RP. The first derivatives normal to the base correspond to directional 
derivatives in the (5, t) plane. It turns out that these derivatives satisfy simple 
differential equations along the base. Thus, knowing the derivatives at one endpoint 
enables us to determine their values at the other ( a “propagation of singularities” 
argument). 

To fix the ideas we shall assume henceforth that the wave configuration is as 
displayed in Fig. 1. Recall that our basic assumption is that the wave pattern is 
already determined by the associated RP. In this and the next section we work 
solely with the Lagrangian formulation (2.6). 

Let r’ be the characteristic families of (2.6) corresponding to the eigenvalues 
fg = rfr pc. At the singularity, the slopes of the r- curves extend from -g, at the 
head to -g,? at the tail of the rarefaction. We introduce characteristic coordinates 
(~1, /I) such that CI = const (resp. p = const) corresponds to a r+ (resp. r-) curve 
and such that 

p = normalized slope of r- at the origin, 

/? = 1 at the head characteristic. 

M: = value of < at point of intersection 

of r+ with the curve j3 = 1. 

(3.1) 

Q 
“/ 

c+ 

a E 

FIG. 1. Setup for the generalized Riemann problem. 
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In particular, the definition (3.1) implies that 

5(% l)=a, g(O, PI = S/P. (3.2) 

Thus, the CRW is now projected onto the rectangular region -IX,, < c( < 0, fl* < 
B < 1, where p* = gT/g, and LX,, > 0 is a fixed number. Any variable Q defined in this 
region (including 5, t) is represented as Q(N, /3). The values V(0, /?) are given in 
terms of the associated RP (with ‘Y-0 in (2.6)), 

WY B) = RL( -g,B; v,, V,). (3.3) 

In particular, we note that 

WA B) = s,, z(0, j.?) = z,. (3.4) 

In the following proposition we give asymptotic expressions for ((LX, fi), ~(a, /?) 
(near a = 0). 

PROWSITION 3.1. We have 

<(a, /I) = a/l”’ + &(a, p) .a2, 
t(a, p) = -g;lapv2 + ?./(a, /3). a2, 

(3.5) 

where &(a, /?), q(a, fi) are smooth functions. 

Proof: From the definition (3.1) of a, /? we get 

ag at ay at 
T$= -g&Y ap=“-. afl (3.6) 

Differentiate the first equation with respect to b, the second with respect to a and 
note that, at a = 0, at/a/l = 0. Solving for atpa, we have 

Also, from (3.2), (3.6), we get 

$0, l)= -g;‘, do? B) = g,B. 

Equation (3.7) now yields 

g (0, /I) = -g;1p-“2, 2 (0, PI = P2, 

(3.7) 

from which (3.5) follows readily. Q.E.D. 
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Our objective in this section is to compute the derivatives (a/&x) Q(0, & of all 
flow variables Q(a, /I). Note that these derivatives vanish identically for the 
associated RP. As a first step, we compute S,(O, /I), z,(O, fi), the derivatives of the 
entropy S and the mass fraction z. 

PROPOSITION 3.2. Let L k in Eqs. (2.6) be expressed in terms of the variables 
p, S, z. Then the functions SJO, /?) = (a/aa)S(O, b), z,(O, fi) = (a/aa)z(O, /I) satisfy 

(i) -$ tP-‘~‘&(o, PI)= -g;‘P-zf(P(o~ B), s,, z,), 

(3.8) 
(ii) $ (B-‘~‘za(O, B))= -g;1B-24p(0, B), S,, z,), 

which, together with the initial conditions, 

(3.9) 

(i) CIS 
w4 I)= z , ( > +g;‘f(P,Y & z,h 

(ii) 
8Z 

zmto, l)= at; ( ) + g; ‘ktp,, s,> zd, , 

determine completely S,(O, /I), z,(O, p). 

Proof. We prove for S. The proof for z is identical. From the chain rule and 
(2.4) we have 

$ St<, t) .g (4 B) -f (P(a, B), S(a, 8, da, B)) $ =i S(a, P). (3.10) 

From (3.5) we see that (@/aa)(a, fl) d oes not vanish near a = 0 so that (3.10) 
implies that the function 

w<, t) = $ S(5, t), (3.11) 

is well defined and bounded as a function of (a, /I). (Its smoothness depends on the 
smoothness properties of J: In the simplified model of Section 6 f will be discon- 
tinuous.) Letting a + 0 in (3.10) and using (3.4), (3.5) we have 

w, 8) = w, B) . P2 +f (Pu-4 81, s,, z,) .g; 18-“2. (3.12) 

To evaluate S’(0, fl) we differentiate (3.11) with respect to t and use (2.4), (2.6) to 
get 

-$S’Ci.~ t)= -$f(P, S,z)= -fpP~-fsS~-fzz~ 

=fpu,-fs9 -f,zc. 

581/81/l-6 
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Next we view t as a function of ({, /I) and multiply the last equation by 
(d/@)t((, 8). With 5, /3 as independent variables we get 

The argument leading to the boundedness of S(r, t) near the singularity (see the 
paragraph following (3.10)) also implies the boundedness of zr there. Hence, letting 
5 + 0 and noting that at/d/l + 0 (and 3.4)), we get 

(3.13) 

Going back to (3.12) it follows that 

$ (B-“‘s,(o, B)) = f W(O, B)) +bT’ -$ u- !f(P(O, B), SIT z,)) 

=&hm P), s,, 4) . $j 40, D) 

+ g;‘P- tf,(P(O~ Bh s,, ZJ . f Pa PI 

-g;W2fM0, P), s,, Z/l 
= $j 40, P)+g(O, 8)-l -$a B) [ 1 &MO9 Bh s,, Zl) 

-if/- ‘B-*fMQ D), s,, z,). 
But the expression in square brackets vanishes by the characteristic relation (2.8) 
(taken along the degenerate r+-characteristic at CI = 0, where at/@ = 0). This 
proves (3.8). The initial condition (3.9) is obtained from (3.12) by noting that 
~'(0, I)= (as/a<),. Q.E.D. 

Our next result constitutes the main analytical tool of the method. We use the 
characteristic relation in order to derive an expression for u,(O, /I). To simplify 
notation, we introduce the function 

A= 46 P, z) L p(e, p, z). (3.14) 

As is the case with the other functions, we refer to L as a function of a, /I 
throughout the CRW. In fact, we shall need only the limiting values n(O, /I), which 
are determined by the associated RP. 
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THEOREM 3.3. Let a( fl) = (a/aa)u(O, fl), and let g = pc be represented as 
g(p, S, z). Then a(P) satisfies 

where 

A(/?)= -; g;2B-1/2$j(B-112(o. B)) 

-; g;‘P-’ . Cgs(O, /O-W4 B) +g,(O, P) .z,(O, 8)l f 40, B). (3.16) 

Equation (3.15) is supplemented by the initial condition 

a(I)=($),+gF’($), (3.17) 

which, along with (3.8)-( 3.9), determines a( /3) completely. 

ProoJ Write the characteristic relations (2.8) as 

g;-$&$ 

au ap at 
gap+%= -b$jj. 

(3.18) 

To eliminate p we differentiate the first equation in (3.18) with respect to /I, the 
second with respect to Q, add and evaluate at a = 0. Noting that at/a/I = 0 at a = 0, 
we obtain 

2dQ PM B) + 4 PI $ do, P) + g,(O, P) .-$j 4% PI 

Using the chain rule and (3.18) we have 

ga(O, B) =g, PA09 B) + g&(0* B) + g,z,(O,B) 

am PI 

(3.19) 

(3.20) 
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Inserting this relation in (3.19) yields 

+ gs& +gzzm - &zg, y] -$ u(0, /?) = $ /x(0, /?) .v. (3.21) 

Observe that all quantities in the above equation are evaluated at (0, 8). In par- 
ticular, by (3.4), g(0, j?) =g(p(O, D), S,, z,), so that, combined with (3.18), 

a=; gm B)=g,-$-P(o, PI = -qt7g$@, PI. 

Also, by (3.5), &(O, B)/aa= -g;‘b- ‘I2 Hence, we can write (3.21) in the form . 

&lW(P) + L-g,&4 +&z,l $j 40? B) -gI’wt B) r3’* 

= -g;‘p-“* -$ A(O, B), 

which is exactly (3.15), (3.16). 
To establish (3.17) simply use the chain rule and (2.6), (3.5) to get 

$0, I)=($) .z I (0, l)+(;),;(O, l)=($),+gci($); Q.E.D. 

The derivatives of the other flow variables are now obtained from the chararac- 
teristic relation (3.18) and thermodynamic representations. In particular, expressing 
p, g in terms of p, S, z we get 

COROLLARY 3.4. The directional derivatives of p, p, g are given by 

~(0,ii)=g,a,o+g;‘P-“*1(0~8), 

g (03 a, = c(O, 8) -2 g (07 PI + P&(0, P) + P,Z,(O, B), 

2 (0, B) =g, 2 (0, D) + g&(0, B) + gAO,8). 

(3.22) 

4. THE LAGRANGIAN SOLUTION OF THE GRP 

We continue the discussion of the previous section, assuming the configuration of 
Fig. 1. We seek here expression for time derivatives along the contact discontinuity 
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r = 0. Since the derivatives of S, z follow directly from (2.6) (see, e.g., (4.7) below), 
we need only compute (au/at)*, (@/at)*. As we shall see, these derivatives satisfy 
a pair of linear (algebraic) equations. 

We have a shock travelling to the right. Using the notation introduced in 
Section 2 we let V, (resp. V,*) be the pre-shock (resp. post-shock) values of Y at the 
singularity (obviously, the subscript is suppressed in p*, u*). The (Lagrangian) 
shock speed W, (i.e., the initial slope of the shock trajectory in the (5, t) plane) is 
given by the well-known jump condition 

We may now state the following theorem. 

THEOREM 4.1. Assume the configuration of Fig. 1. The derivatives (ap/at)*, 
(au/at)* are determined by a pair of linear equations, 

a,($)*+b,($)*=d,. 

ar($)*+b.($)*=d., (4.3) 

where, with fl* = g:/g,, a( /I) as in Theorem 3.3, and I as defined in (3.14), 

a,= 1, b/= (g:)-‘, d,= -(grg:)“*a(B*)-(g:)-‘~(O, B*). (4.4) 

As for a,, b,, d,, they can be determined explicitly from the values of V,?, V,, 
(aV/a<),, the Hugoniot (u, p) relation, and the reaction rate function. (Explicit 
expressions for a y-law gas are given in Section 6). 

Proof To establish (4.2) we note that the flow in the region t(a, /3*) < 5 60 
(i.e., between the tail characteristic of the rarefaction fan and the contact discon- 
tinuity) is smooth. Applying the chain rule along that characteristic we have 

!E((), p*)=(2)*at(;a~*‘+($) 
I 
*at(;ap*). 

From (2.6) we have (ap/ag): = -(&/at)*. Using the expression (3.22) for 
(ap/aa)(O, /I*) and (3.5) for (&/aa)(O, /I*), (a</aa)(O, /I*) and noting that by (3.2), 
g: =gJ*, we obtain (4.4). 

Turning now to (4.3), we write the Hugoniot relation at t > 0 in the form 

K(u, P,z,u+, P+,P+)=& (4.5) 

where u + , p + , p + are the pre-shock values, u, p are the post-shock values, and z 
is the value at the shock (observe that for a weak solution of (1.1) z can be discon- 



84 MATANIA BEN-ARTZI 

tinuous only acorss the contact discontinuity). The shock speed (in 5, t) associated 
with the values in (4.5) is W, = (p -p+)/(u - u,). Differentiating (4.5) in the 
shock direction we get 

($+ W,$)K(u,P,z,u+,P+,P+)=O. (4.6) 

Consider now the limit of (4.6) as t + 0. Then clearly W, + W, and 

(4 p, z) + tu*, p*, z,), (u+, P+,P+)+(%, P,,PrL 

au au * -+ - 
0 

ap ap * -* - at at 0 at at 
and Eq. (4.6) reduces to the form (4.3). The details of this reduction procedure 
(which are needed also in the next section) are given in the following propositions, 
where the basic idea is to replace t-derivatives by t-derivatives ahead of the shock 
and t-derivatives by t-derivatives behind it. Q.E.D. 

PROPOSITION 4.2. The limits of time-derivatives behind the shock front are given 
by 

= -Me,*, P,*, z,), 

= (c,*)F’ 

(4.7) 

(4.8 1 

where 3, is the function introduced in (3.14). 

ProojI Equation (4.7) is just the fourth equation of (2.6). To establish (4.8), let 
us write p in terms of p, S, z, so that, along < = const, 

(4.9) 

where we have used (2.2) and (2.4). Now, viewing S and p as functions of e, p, z 
and differentiating the identity 

P = PM6 p, z), s(e, P, ~1, z) 

with respect to z, we get 

Me, P, 4 ask P, 4 
-pp aZ =Ps aZ +P*? (4.10) 
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so that (4.9) becomes 

8P 
5 + 4e, P, 2) . 

Equation (4.8) is now obtained when we take the limit t -+ 0 behind the shock. 
Q.E.D. 

PROPOSITION 4.3. The limits of time-derivatives ahead of the shock are given by 

($),= -($); ($q= -p:($), (4.11) 

(4.12) 

Proof. Equations (4.11) follow directly from (2.4). As for (4.12), we repeat the 
argument of (4.9). So, expressing p in terms of p, S, z we have 

ap 2 ap as aZ 
z=c ~+P”~+PZ~ 

We, P, 4 
aZ +P, 

= -g2$-k.Ep(e,p,z), 

which yields (4.12) in the limit t + 0. Q.E.D. 

Finally, we deal with the transformation of spatial derivatives to time derivatives 
behind the shock. 

PROPOSITION 4.4. The limits of spatial derivatives of j7ow variables behind the 
shock are given by 

= -WI-’ 
+ K’ CkW, P,*, z,)-kk(e,, P,, ~11, 

(4.13) 

(4.14) 

(4.15) 
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ap * -- 
( > at [(/I,*)’ WLm3 + 3(c:)-2 W,‘] 

ap 
+ 3 -g 

( 1 
r W,‘(P,*)’ 

au 
( ) z. 

* W,‘(p,*)’ * [3 +g; w;*I 

-00 
ap PT 2 - 

+ 2,’ Pr 
- 4er9 Pry z,) K3(P32 

-3A(e,*, p,*,z,).(c,*)-2W;‘, (4.16) 

where, again, 1 is as in (3.14). 

Proof: Equation (4.13) follows from (2.6) and (4.14) is identical to (4.12) when 
pre-shock values are replaced by post-shock values. To obtain (4.15) we use 
the continuity of z across the shock which implies also the continuity of 
(a/at+ W,(a/a<))z. Using (2.6) for the time derivatives we get (4.15). Finally, to 
extablish (4.16) we again differentiate a well-known identity [S] along the shock 
trajectory to get (compare (4.6)), 

(i+ W+~)[(P-P+)(-yp)-(u-u+)*]=o~ 

Letting t + OS and replacing post-shock <-derivatives (resp. pre-shock r-derivatives) 
by t-derivatives (resp. <-derivatives) in accordance with the previous results we get 
(4.16) as the limit of ap/ag. Q.E.D. 

Remark. Note that by (4.6) the derivative (ap/@),* is not needed for the 
Lagrangian solution. However, it will be needed in the Eulerian treatment. 

5. THE EULERIAN SOLUTION OF THE GRP 

In this section we take up our main goal in this paper, the solution of the GRP 
for the Eulerian system (1.1 ), in the sense of (1.2). 

We assume again the setup of Fig. 1, with the jump located initially at x = 0. As 
an auxiliary tool in the derivation we shall use the Lagrangian coordinate 5 defined 
by (2.5). As was demonstrated in the previous sections the time derivatives at the 
singularity depend only on the spatial slopes as g + 0. Thus we are justified in 
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assuming that the initial values of flow variables are simultaneously piecewise linear 
in x and <, with slopes related by 

($),=b (g); ($jgr=P;.’ (E), 
for any variable Q. 

In addition to the notation introduced in Section 2 we use here the notation U,,, 
(aU/at), for the limiting values of U(0, t) and its derivative as t + 0+ (see (1.2)). 
Recall that U0 is determined already by the associated RP (1.3), so we regard it as 
known in the present context, in complete analogy with I’* in the Lagrangian case. 
Thus, in this section we focus on the evaluation of (aIJ/at),. 

Using the Lagrangian transformation (2.5) and (5.1) we can now use the results 
of Theorem 4.1 and Proposition 4.2 in order to determine the time derivatives 
(aQ/&)* of any flow variable Q along the contact discontinuity (including the 
discontinuous ones, for which we have right and left values of the derivative). 

Let 5 = t;(t) be the Lagrangian representation of the line x = 0. It is easily seen 
that 

;i;= -P(5(f), t) .45(t), t), igO) = 0. (5.2) 

Indeed, (5.2) follows by differentiating the identity x(<(t), t) = 0 and noting (2.5). 
Clearly, the value of the right-hand side in (5.2) at t = 0 is determined by V,. 

Suppose first that the line x = 0 (or, equivalently, 5 = t(t)) is not contained in the 
rarefaction fan. Then the chain rule and (5.2) imply, for any variable Q, 

(~)~=~~(~~(~,r)-p,~~$~(~,f)) along 5=5(t). (5.3) 

Again, all derivatives in the right-hand side are known from U0 and the results of 
Section 4. Indeed, the l-derivatives are treated in Proposition 4.4 (the expressions 
for (WW?, (WW ,? are completely analogous to (4.13), (4.14), and the expres- 
sion for (+/at): is obtained by using the chain rule (ap/&x)(O, /?*) = (ap/at):. 
(Waa)(O, P*) + (WW . (XlaaW, P*) in conjunction with (3.22), (4.8)). 

The fact that x = 0 is not contained in a rarefaction fan means that there is no 
characteristic curve (= “sonic signal”) parallel to it, so that we can formulate our 
result as 

THEOREM 5.1 (Non-sonic case). In the non-sonic case the Eulerian solution to the 
GRP is given by the Lagrangian solution to the GRP (discussed in Section 4) and the 
chain rule (5.3). 

Next we discuss the sonic case. Here the line x = 0 is tangent at the origin to a 
curve of the r--rarefaction fan (or, equivalently, coincides with a straight 
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r--characteristic for the associated RP). The formula (5.3) is now meaningless 
since the involved derivatives blow up as we approach the singularity. We are 
forced, therefore, to replace the (5, t) representation by the more refined charac- 
teristic structure (CI, /I) which was introduced in Section 3. 

Let (cc(t), /I(l)) be the trajectory x = 0 in the (~1, b) plane. Our assumption that 
x=0 is sonic implies that 

a(0) = 0, B(O) = BOY (5.4) 

where 

40, Bo) = c(Q I-M. (5.5) 

In (5.5) and throughout the rest of this section we are using the characteristic 
notation of Section 3. 

The relation (5.5) determines b,, uniquely and instead of (5.3) we have the 
formula 

aQ ( ) - 
at o 

= aQ (0, PO). a’(0) + $ (0, PO) *B’(O). 
aa (5.6) 

We may now summarize the sonic case by the following theorem. 

THEOREM 5.2 (Sonic case). In the sonic case the Eulerian solution to the GRP is 
given by (5.6), where f10 is determined in (5.5), the derivatives (aQ/@?)(O, j&J are 
evaluated from the associated RP, the derivatives (aQ/aa)(O, /&,) are obtained by 
(3.8), (3.15) and (3.22), and the slope (a’(O), p’(O)) is given by 

a’(0) = -g,py, (5.7) 

(5.8) 

(The derivatives in (5.8) are gioen in (3.22).) 

Proof To prove (5.7) we differentiate the identity t = t(a(t), B(t)), using (3.5), 
and let t + 0: 

1 = g (0, /IO) . a’(0) + 5 (0, &) . /I’(O) = -g; ‘/?& “* . a’(0). 

The proof of (5.8) is longer. First, we use the expressions (3.5) in @Y/as = -g(at/aa) 
and drop all terms which are Q(a*). We obtain 

/?‘I* + 2a&(O, /I) = -g(O, /I). [ -g;‘b-‘I* + 2an(O, /I)] + 2 (0, /?). (g;‘p-1/2) .a, 
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and since g(0, /?) = g,/? (see (3.2)), we get 

do, B) + dw, B) = ; g,‘B- u2 gfj (0, fl). (5.9) 

Next, let r = t(t) be the Lagrangian representation of (a(r), B(t)). We have 

at at 
t-‘(t) = z a’(t) + -qj B’(t) 

(5.10) 

On the other hand, using (5.2), (5.4) we have 

t’(t)= -PMG O= -(PuNQ S&--$ (w)(Q B&W 

-~(pu)(O,8,).(B(r)-8,)+0(ri). (5.11) 

But (a/&?)( pu)(O, p,,) = 0 by (5.5) and the characteristic relation dp +g du = 
c2 dp + pc du = 0 along a = 0. Thus, equating first-order terms in (5.10), (5.11) we 
have 

a'(0)~'(O)&'~2+~~~2a"(O)+2~(0,/30)a'(O)2= -a'(O).i(pu)(O, /3,,). (5.12) 

Similarly, in analogy with (5.10)-(5.12), the identity 1 = (at/da) a'(t) + 
(at/a/?) P’(t) yields (taking first-order terms in t) 

gr' ~~r'(O)fi'(O)~~~'~ +2a'(O)'q(O, flo)-g;1a"(0)/?;1'2=0. (5.13) 

Multiply (5.13) by g,/?, and add to (5.12) to obtain 

2a’(O) B’(O) B01’2 + 2a’(0)2C~(O~ Bd + g&do9 8dl = -a’(O) & (w Wk /id. 

The last equation, in conjunction with (5.7) and (5.9), implies (5.8). Q.E.D. 

This concludes the discussion of the Eulerian solution to the GRP in all cases. 

6. A SPECIAL CASE: Y-LAW GAS AND A SIMPLIFIED ARRHENIUS MODEL 

In this section we specialize to the case that the equation of state is given by 

P = (Y - 1) de - 4ozh Y>l, q;=-0, (6-l) 
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where the constant q0 is the (chemical) energy released when a unit mass of 
unburnt gas is totally burnt. We take y > 1 to be a given fixed constant. 

Remark. In taking y to be independent of z (and, in particular, the same for 
burnt and unburnt gas) we are following Chorin [3] and Colella, Majda, and 
Roytburd [4]. For a (presumably) more realistic model where y = y(z) the entropy 
can still be taken as in (6.2) below and so is the speed of sound, but for the rest 
of the treatment one has to go back to the general discussion of the preceding 
sections. 

It is immediate from our definition of entropy (2.1), combined with (6.1), that we 
can take 

1 S=-.P=p’-F(e-qo~). 
Y-1 PY (6.2) 

In addition to Eq. (6.1), and again following [ 3,4], here we shall take a 
simplified Arrhenius model, where the reaction rate is a step function depending on 
temperature, which we take here as p/p. Thus, we assume 

where 
k = KzH( T- T,), K>O, T=P~P, (6.3) 

x > 0, 

x < 0, 

and T, is a given (“critical”) temperature. The function f in (2.4) is given now by 

f= -Kq,++‘zH(T- T,), T= PIP, (6.4) 

and the function 3, of (3.14) can be conveniently expressed in terms of p, p, z as 

&P, P. z) = - (Y - 1) Kq,pzH(T- T,). (6.5) 

In the rest of this section we give the explicit versions of the formulae appearing 
in the preceding sections when specialized to the present model. We start with the 
solution of the centered rarefaction wave for the associated RP (see Section 3). 

F'ROP~SITION 6.1. Let the coordinate /I be defined by (3.1). For the y-law case, the 
values at the singularity (a = 0) are given by 

p(0, B) =p#y’(y+ l), pa B) = P,B2’(y + I), c(o,~)=c,~‘y--l)‘(y+l), (6.6) 

u(o,~)=u,+~(l-~“~‘“y+~‘). 
I 

ProojI The expressions in (6.6) follow from g(0, 8) = g,p and the relations, 

(6.7) 

6) 
(Y + 1 )/ZY 

g=g,- E 3 0 
Y 

p=pI’ p , I PI 
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which hold identically along tl = 0, where S and z are constant by (3.4). To obtain 
(6.7), write the characteristic relation (2.8) at the singularity (where dt =0) as 
du + (2/(y - 1)) dc = 0. Q.E.D. 

Next, we give the explicit versions of (3.8). By (6.6) we have 

Corresponding to the “critical” temperature T, we have a, defined by 

WI Pc) = To 

so that we have from (6.3 j-(6.6), 

(i) &G /n s,, z,) = Kz,H(B - 8,), 

(ii) f(p(0, /3), S,, z,) = -Kq+,pj -Y/?-2(y- l)/(y+ l)H( p - p,), 

(6.8 1 

(6.9) 

A@, B)= -(I’- 1)Kqop,z,.p2”y+1)H(B-Bc). (6.10) 

Equation (3.8) now takes the form 

~(B-l~2s,(o,8))=Kq,z,g;‘pJ-yP-4’”’tl)H(P-Bc). 

which implies 

I 

P”‘&(O, 11, PC21 

S,(O,j?)= p2. S,(O, 1)-~Kq,z,gi.lp:-y(B’1-3~)/‘y+~)-1) , 
i I 

1>/Iap,, 

P2 . B,“2&(o, PC), B < PC < 1. 
(6.11) 

I 

P2z,(0, 1) B,>L 
z&o: /I) = p2. {z,(O, 1) + Kg‘?z,( /9-’ - l)}, 1 >Ba?B,, (6.12) 

P2 . B; 1’2m B,), B<Bc< 1, 

along with the initial conditions (see (3.9)), 

as w, l)= g ( > - fGw,~,'P: -yml -P,), I 
(6.13) 

az 
za(Q 1) = 2 ( > + Kz, gr ‘H( 1 - PC). , 
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Also, by (6.7) we have (d/d/I)u(O, fl) = - (2cd(y + 1))fl-2’(y+1). Inserting these 
expressions in (3.16), we get (6.15). The expressions (6.16~(6.18) are now obtained 
by integrating A(P), noting the expressions (6.10), (6.11) for L(O, /I), S,(O, /3), 
respectively. Q.E.D. 

Remark. Note that the assumption /I, > 1 means that no reaction takes place 
throughout the rarefaction wave, so that (6.16) coincides with the corresponding 
formula for the planar non-reactive case [ 11. 

Finally we discuss the form assumed by (4.6) in the y-law case, thus providing 
explicit expressions for a,, b,, d, in (4.3). 

THEOREM 6.3. In the case of a y-law equation of state, the coefficients a,, b,, d, 
in (4.3) are giuen by, with p2 = (y - l)/(y + l), 

a 41 p*-Pr 
r 

2 P* + P’P,’ 

b,,i ‘*-% 
2 P* + P2Pr 

- (g,*)-2W,- w;‘, 

d.=L~.(~).+Lp.(~),+Lp(~)~+Li, 

(6.19) 

(6.21) 

where 

L+*-u,) pr+ 
( 

2 2 

p*p+;2p + sz K’ + wr, 
r ) 

L 
P 

= -2-~P2(P*-Pr) 
2 P*+P2Pr ’ 

L = -Ip*-P, 
P 

2 pr ’ 

L-~,W,-l 
( 
cl” p*-pr 2 p*+p2p +1 +k,*)-2K~:~ r ) 

1, = Ate,, pry z,), V = 4e,*, P,* , 2,). 

Proof: As noted already, the Rankine-Hugoniot jump conditions for the system 
(1.1) imply that z is continuous across shocks. Thus, for the equation of state (6.1), 
the term q,z is an additive constant, the same on both sides of the shock (this is 
definitely different from the way “sharp” detonation and deflagration waves are 
treated, as in [S]), Hence, the Hugoniot relation (4.5) has the same form as for the 
non-reactive case and is given by the well-known formula [S], 

l-p2 1 
w 

~(u,P,z,~+,P+,P+)=u-u+-(p-p+) 
P+(P+P2P+) . 

(6.22) 
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Differentiating this expression as indicated in (4.6) and using the transformations 
between <-derivatives and t-derivatives as in Propositions 4.24.4 we obtain a linear 
relation of the type (4.3), with the coefficients given by (6.19)-(6.21). Q.E.D. 

7. A NUMERICAL EXAMPLE 

In the Introduction ((1.5), (1.6)) we have outlined a numerical scheme based on 
the analysis presented in this paper. Such a scheme (which we call a GRP-scheme) 
is indeed a straightforward implementation of the formulas derived here for the 
time derivatives of flow variables at cell boundaries. For the non-reactive case, 
including “quasi” one-dimensional flows, the GRP scheme was used successfully in 
a variety of test problems [l, 21. 

The point we want to emphasize here is that the differencing of the reaction 
equation (the fourth equation in (1.1)) seems to be crucial in obtaining a stable 
“physical” solution. In fact, we shall show that rather small variations of the 
difference scheme lead to completely different weak solutions of the system (i.e., 
weak detonations followed by shocks as opposed to a C-J detonation). 

We start by discussing the difference scheme (1.5), (1.6) in some more detail. 
First, using the explicit formulas in Theorem 4.1 and Proposition 4.2, we obtain the 
time-derivatives (+/at);+ i,*, (+/&)l+ ,,Z, and (a~/&)~+ ijz (we are using the 
notation of (1.2)). This enables us to determine the fluxes for the first two equations 
in (l.l), thus obtaining p?+’ and ~7”. Turning now to the last two equations of 
(l.l), we see that their fluxes depend on the evolution of the mass-fraction z (recall 
that e is a function of z). Let us now specialize to the simplified Arrhenius model, 
where k is given by (6.3). 

If dt=t”+‘- t”, then K. At is (roughly) the amount by which z decreases in one 
time step (provided that T> T,). Note that the CFL-condition for the system (1.1) 
does not depend on K. However, for a time step which is of the order of magnitude 
of K- ’ or bigger, a conceivable “explicit” scheme would yield a detonation moving 
at a speed of one cell/time step. This can be a very high speed, manifesting itself as 
a “weak detonation,” namely, a non-physical solution. Thus, in an attempt to avoid 
this situation, we have tried two different schemes for the solution of the last two 
equations of (1.1). 

(a) The “explicit” scheme. Here (p~)~~~/~ is evaluated explicitly as in (1.6). 
Similarly, using (6.3) we evaluate 

(kp):+ “* = ;K[ (pz);;;/; + (pz):‘;/;] . H( T: - T,). (7.1) 

The fourth equation in (1.1) is now differenced as 

(PZ)?” - (pz); = - 2 [ (pzu);;;j’; + ( pzu);f;/;] - At. (kp);+ I’*. (7.2) 
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Combined with a similar explicit equation for el+ ‘, one determines el+ ‘, zr + ‘. The 
procedure is then iterated once by modifying (7.1) as 

(kp)Y + 1’2 = f K[( pz,;g; + (pz);‘:y] . H T:+l+TymT 2 C (7.1)’ 

and then repeating (7.2). 
(b) The “implicit” scheme. Here we are more specific about using the form 

(6.3) for k. The fluxes (pzu)~~$~ are calculated as before, but instead of (7.2) we 
get 

(Pz)r+’ - ( pz)’ = - g [ (pzu)y::g - (pzu)y’;/;] 

+. [(pz);+lH(T;+‘- TJ + (PzXWTY- TJI- (7.3) 

Together with the energy equation, we can solve for er + i, z; + ’ (observe that pr + ‘, 
and hence T; + I, can be expressed by (6.1)) by iterations. In practice, we iterate 
only once. Note that essentially (7.3) contains a modification of the “source term” 
(7.1), but because it is iterated only once, the two schemes are quite close to each 
other (compare the “source terms” in (7.3) and (7.1)‘). 

As a test case we have chosen the case of ozone decomposition C-J detonation 
discussed in [4]. The equation of state here is given by (6.1 t(6.3), where (in CGS 
units), 

y = 1.4, q. = 0.5196 x lOlo, K= 0.5825 x lOlo, T,=O.1155 x 10”. 

The initial data was taken as the piecewise constant data defining a C-J detona- 
tion as a single wave (recall that in the Chapman-Jouguet model a C-J detonation 
corresponds to a sonic detonation, or, in other words, a sharp reaction wave that 
moves at minimal speed relative to the unburnt gas. See [S] for more details). The 
initial state was given by 

(P, p, u, z)= 
(PO, PO, 0, I), x>5O.Ax 

(PC,, PCJF %I, O)? x-=50-Ax’ 

where p. = 8.321 x lo’, p. = 1.201 x 10e3, and pEJ = 6.270 x 106, pc, = 1.945 x 10e3, 
u,, = 4.162 x 104. 

Observe that the values pC,, pc,, u,, depend only on po, po, and q. (and not on 
K or TC). The speed of the sharp front (in the Chapman-Jouguet theory) in this 
case is D,, = 1.088 x 10’. 

If we take (following [4]) the atmospheric data as 

P atm = 1.0135 x 106, pat”, = 1.29 x 10P3, 

581/81/l-7 
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then our C-J point is given by 

PcJ = 6.19pam 9 PcJ = 1.51Pa,m. 

We mention that our C-J point is different from the one reported in [4]. This may 
be attributed to a discrepancy in pO, pO, or qo. Thus, a full comparison is not 
possible. However, the main numerical phenomena seem to be the same. 

Our calculations were made on an equally spaced mesh of 100 cells. To follow 
the moving wave, we keep eliminating mesh points at the left end and adding new 
mesh points at the right end, so as to keep the front always at (roughly) the middle 
point. Obviously, eliminating cells at the left poses a problem for the appropriate 
“in-flux boundary conditions.” We have simply taken for these conditions the 
values at the last eliminated cell. Since this was done a large number of times 
during the course of one calculation, it might explain (at least partially) the 
appearance of oscillations in the flow profiles displayed below. 

We now recall briefly the structure of a detonation wave in the Z-N-D model for 
the solution of (1.1) (see [4, 53 for more details). The wave (corresponding to a C-J 
sharp front in the Chapman-Jouguet theory) consists of a reaction zone of finite 
width moving at the C-J speed, across which the mass-fraction z varies from z = 1 
to z = 0. The edge of the reaction zone facing the unburnt (z = 1) gas is a fluid- 
dynamical shock wave which raises the pressure and density to values significantly 
higher than the C-J values. We refer to this shock as the “Z-N-D spike.” Following 
the spike, the pressure and density drop monotonically and continuously to their 
C-J values at the other edge of the reaction zone. 

In our test-case the width of the reaction zone is approximately 5 x 10e5 cm and 
the Z-N-D spike values are approximately 

PZND z 9.62~am 9 PZND = 2.53~,,,. 

We ran the test case for the following values of Ax: 

Ax=5x 10-6, 5 x 1o-s, 5 x 10-4, 5 x 10-l. 

These values correspond, respectively, to Figs. 8b, c, d, and e in [4] and should be 
compared with them. 

In our results we display profiles of velocity, pressure, density, and the mass 
fraction z. Recall that we are using a frame of 100 cells, creating cells at the right 
and eliminating cells at the left, so as to capture the reaction zone at the middle. 

Figure 2a gives the results for an explicit calculation with Ax = 5 x 1O-6 cm, 
At = 5 x lo-‘* s, after 2000 cycles. There are approximately 10 cells in the reaction 
zone, and the Z-N-D spike is clear and at its correct peak. In Fig. 2b we display 
the results for an implicit calculation again with Ax = 5 x 10e6 cm but At = lo-” s, 
after 1000 cycles. Thus, the implicit scheme allows for a time step which is twice as 
big as that needed for the explicit scheme. 

In Figs. 3a, b we give the results for the explicit and implicit calculations, respec- 
tively, with Ax = 5 x lo-’ cm. Thus, the reaction zone is roughly of the same size 
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zone x 1 cell. 
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as one computational cell. To reach the time level T= lo-’ s we need 2000 cycles 
for the explicit case but only 1000 cycles for the implicit case. However, the dif- 
ference between the two results is truly amazing. While the explicit solution gives 
the physical C-J detonation, the implicit solution yields a weak detonation followed 
by a fluid dynamical shock wave in the burnt gas. This is exactly the solution 
obtained in [4]. In this case, one cannot expect the explicit solution to produce the 
correct value of the Z-N-D spike, since the whole reaction zone occupies only one 
computational cell. 

Our next calculation was carried out with Ax = 5 x lop4 cm, so that the reaction 
zone occupies roughly one tenth of a cell. The explicit scheme was run with 
At = lOPro s for 10,000 cycles, and the resulting profiles are shown in Fig. 4a. For 
the implicit scheme, we took At = 10e9 s, and Fig. 4b shows the profiles after 400 
cycles (so as to have the full structure within the frame). The discussion of 
Figs. 3a, b is applicable here too. (Note that the “non-physical” implicit profile is 
much smoother than the correct explicit profile. We cannot offer a simple explana- 
tion for that.) 

Finally, we took the case Ax = 5 x 10-l cm. Here the reaction zone is about lop4 
of one cell. And here is another surprise. Both the explicit and the implicit calcula- 
tions proceeded smoothly and produced the correct C-J step. We used At = lo-* s 
for the explicit calculation and At = lo-’ s for the implicit calculation. The results 
after 400 cycles are displayed in Figs. 5a, b. 
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